Due to the outrageous large size of WSIs, most of the methods divide one slide into lots of small image patches and perform classification on each patch independently. However, neighboring patches often share spatial correlations, and ignoring these spatial correlations may result in inconsistent predictions. In this paper, they propose a neural conditional random field (NCRF) deep learning framework to detect cancer metastasis in WSIs. NCRF considers the spatial correlations between neighboring patches through a fully connected CRF which is directly incorporated on top of a CNN feature extractor. The CNN feature extractor can also benefit from considering spatial correlations via the CRF component. Compared to the baseline method without considering spatial correlations, we show that the proposed NCRF framework obtains probability maps of patch predictions with better visual quality. They also demonstrate that the method outperforms the baseline in cancer metastasis detection on the Camelyon16 dataset and achieves an average FROC score of 0.8096 on the test set.
Input variables : Whole Slide Images
Output Variables : Cancer Prediction
Statistical | : | Somers D | Accuracy | Precision and Recall | Confusion Matrix | F1 Score | Roc and Auc | Prevalence | Detection Rate | Balanced Accuracy | Cohen's Kappa | Concordance | Gini Coefficent | KS Statistic | Youden's J Index |
Infrastructure | : | Log Bytes | Logging/User/IAMPolicy | Logging/User/VPN | CPU Utilization | Memory Usage | Error Count | Prediction Count | Prediction Latencies | Private Endpoint Prediction Latencies | Private Endpoint Response Count |
Visit Model : github.com
Additional links : openreview.net
Model Category | : | Public |
Date Published | : | June, 2021 |
Healthcare Domain | : |
Medical Technology
Provider |
Code | : | github.com |
Health Risk Management |
Disease Detection |