Predictive modeling of clinical risk, including in-hospital mortality, hospital readmission, chronic disease onset, condition exacerbation, etc., from patient EHR, is one of the health data analytic problems that attract most of the interests. The reason is not only because the problem is important in clinical settings, but also there are challenges working with EHR such as sparsity, irregularity, temporality, etc. Different from applications in other domains such as computer vision and natural language processing, the labeled data samples in medicine (patients) are relatively limited, which creates lots of troubles for effective predictive model learning, especially for complicated models such as deep learning. In this paper, they proposed MetaPred, a meta-learning for clinical risk prediction from longitudinal patient EHRs. In particular, in order to predict the target risk where there are limited data samples, they trained a meta-learner from a set of related risk prediction tasks which learns how a good predictor is learned. The meta-learned can then be directly used in target risk prediction, and the limited available samples can be used for further fine-tuning the model performance. The effectiveness of MetaPred is tested on a real patient EHR repository from Oregon Health & Science University. They are able to demonstrate that with Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) as base predictors, MetaPred can achieve much better performance for predicting target risk with low resources comparing with the predictor trained on the limited samples available for this risk.
Input variables : Electronic Health Records(EHRs)
Output Variables : Clinical risk prediction
Statistical | : | Somers D | Accuracy | Precision and Recall | Confusion Matrix | F1 Score | Roc and Auc | Prevalence | Detection Rate | Balanced Accuracy | Cohen's Kappa | Concordance | Gini Coefficent | KS Statistic | Youden's J Index |
Business | : | Population at High Risk of Disease | Risk by Geography | Risk by Demographics | Risk by Clinical Parameters | Optimized Hospital Resource Utilization | Decreased Cost of Care | Decreased Patient Visits |
Infrastructure | : | Log Bytes | Logging/User/IAMPolicy | Logging/User/VPN | CPU Utilization | Memory Usage | Error Count | Prediction Count | Prediction Latencies | Private Endpoint Prediction Latencies | Private Endpoint Response Count |
Visit Model : arxiv.org
Additional links : arxiv.org
Model Category | : | Public |
Date Published | : | May, 2019 |
Healthcare Domain | : |
Payer
Provider |
Code | : | github.com |
Health Risk Management |
Health Risk Prediction |