OmiEmbed is a unified multitask deep learning framework that captures biomedical information from high-dimensional omics data with the deep embedding and downstream task modules. The deep embedding module learnt an omics embedding that mapped multiple omics data types into a latent space with lower dimensionality. Based on the new representation of multi-omics data, different downstream task modules were trained simultaneously and efficiently with the multi-task strategy to predict the comprehensive phenotype profile of each sample. OmiEmbed support multiple tasks for omics data including dimensionality reduction, tumor type classification, multi-omics integration, demographic and clinical feature reconstruction, and survival prediction. The framework outperformed other methods on all three types of downstream tasks and achieved better performance with the multi-task strategy comparing to training them individually. OmiEmbed is a powerful and unified framework that can be widely adapted to various application of high-dimensional omics data and has a great potential to facilitate more accurate and personalized clinical decision making.
Input variables : omics data
Output Variables : phenotype profile including diagnostic, prognostic and demographic information
Statistical | : | Somers D | Accuracy | Precision and Recall | Confusion Matrix | F1 Score | Roc and Auc | Prevalence | Detection Rate | Balanced Accuracy | Cohen's Kappa | Concordance | Gini Coefficent | KS Statistic | Youden's J Index |
Business | : | Population at High Risk of Disease | Risk by Geography | Risk by Demographics | Risk by Clinical Parameters | Optimized Hospital Resource Utilization | Decreased Cost of Care | Decreased Patient Visits |
Infrastructure | : | Log Bytes | Logging/User/IAMPolicy | Logging/User/VPN | CPU Utilization | Memory Usage | Error Count | Prediction Count | Prediction Latencies | Private Endpoint Prediction Latencies | Private Endpoint Response Count |
Visit Model : github.com
Additional links : ncbi.nlm.nih.gov
Model Category | : | Public |
Date Published | : | May, 2021 |
Healthcare Domain | : |
Life Sciences
Medical Technology Provider |
Code | : | github.com |
Health Risk Management |
Disease Detection |
Health Risk Prediction |