Though several deep learning approaches were developed to assist in CT analysis, nobody considered study triage directly as a computer science problem. They describe two basic setups: Identification of COVID-19 to prioritize studies of potentially infected patients to isolate them as early as possible; Severity quantification to highlight patients with severe COVID-19, thus direct them to a hospital or provide emergency medical care. We formalize these tasks as binary classification and estimation of affected lung percentage. Though similar problems were well-studied separately, we show that existing methods could provide reasonable quality only for one of these setups. We employ a multitask approach to consolidate both triage approaches and propose a convolutional neural network to leverage all available labels within a single model. In contrast with the related multitask approaches, we show the benefit from applying the classification layers to the most spatially detailed feature map at the upper part of U-Net instead of the less detailed latent representation at the bottom.
Input variables : CT scan
Output Variables : Covid detection and severity prediction
Statistical | : | Somers D | Accuracy | Precision and Recall | Confusion Matrix | F1 Score | Roc and Auc | Prevalence | Detection Rate | Balanced Accuracy | Cohen's Kappa | Concordance | Gini Coefficent | KS Statistic | Youden's J Index |
Infrastructure | : | Log Bytes | Logging/User/IAMPolicy | Logging/User/VPN | CPU Utilization | Memory Usage | Error Count | Prediction Count | Prediction Latencies | Private Endpoint Prediction Latencies | Private Endpoint Response Count |
Visit Model : github.com
Additional links : sciencedirect.com
Model Category | : | Public |
Date Published | : | March, 2021 |
Healthcare Domain | : |
Life Sciences
Provider |
Code | : | github.com |
Health Risk Management |
Disease Detection |